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Hierarchical clustering in the spectra of incommensurate 
systems 

S C Bell? and R B Stinchcombe 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 24 May 1988 

Abstract. Using degenerate perturbation theory to all orders we derive the Hofstadter 
clustering rules for the spectrum of Harper’s equation. We also extend our method to 
calculate the fractal dimension, D,, of the spectrum and speculate that D, = f for typical 
values of the incommensurability parameter 4. The clustering rules are also shown to be 
valid for a one-dimensional model of quasicrystals. 

1. Introduction 

Incommensurability occurs when there are two or more competing length scales in a 
problem. A simple example is that of the mismatch of lattice constant between a 
substrate and an absorbed layer (Ying 1981). The effect of the competition between 
the forces favouring different atomic separations is often to stabilise modulated states 
whose wavelength is an irrational ratio of the underlying lattice constant. Another 
less obvious example, which motivates the main equation to be investigated in this 
paper, is that of Bloch electrons in a magnetic field. Here the two length scales are 
the de Broglie wavelength and the cyclotron radius. The competition is between the 
crystal field, which on its own produces a band spectrum, and the magnetic field which 
on its own produces a discrete spectrum. As will be seen, the effect of these two forces 
is to produce a spectrum which is neither discrete nor continuous but, in fact, Cantor-set- 
like. It is the analysis of this kind of spectrum which is the focus of attention in this 
paper. 

The first objective of this work is to investigate a model equation (Harper 1955) 
for this problem using perturbative methods. Following Stinchcombe and Bell (1987) 
we show that a beautiful hierarchical description of the spectrum due to Hofstadter 
(1976) can be derived analytically. From this basic analytic result further properties 
of the spectrum can be calculated such as the fractal dimension, Df. We then show 
that the derivation of the rules is sufficiently general that it can be applied to similar 
equations which have occurred in the theory of quasicrystals (e.g. Luck and Petritis 
1985). We begin here with a more detailed introduction to Harper’s equation. 

2. Harper’s equation 

Harper (1955) showed that using some ideas due to Peierls (1933) the Schrodinger 
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equation for a Bloch electron in a magnetic field could be approximated by 

c,+, + c,-, +2A cos(2m#~n + v)c, = Ec, (1) 
where c, is related to the wavefunction. An isotropic lattice corresponds to the case 
A = 1 .  $I is the basic incommensurability parameter and is equal to the number of flux 
quanta per unit cell. It has been shown (Bell 1986) that (1) is also the equation for 
phonons in a modulated atomic chain. In the case of Bloch electrons the physical 
spectrum is obtained by finding the union of the spectra for all v. Equation (1) is a 
linear eigenvalue problem; if 4 = p / q ,  for p ,  q integer, then it reduces to a q x q matrix 
equation. Here we are interested in the incommensurate limit ( q  + CO). 

One of the fundamental properties of (1) is that it admits a dual transformation 

c, = E  d, exp(2 r i+mn+ivm+ikn)  (2) 
m 

such that 

A (d,,, + d,-,) + 2 cos(2m$m + K)d, = Ed,. (3) 
Thus A = 1 is a self-dual point, which suggests that it locates some kind of critical 
point. Because (2) is a special kind of Fourier transformation it interchanges extended 
states with localised states and  vice versa, so it seems likely that there is a localisation 
transition at A = 1. This has been verified by numerical calculation. Aubry and AndrC 
(1980) have shown that if a Lyapanov exponent (inverse localisation length) is associ- 
ated with the wavefunction then L= 1/[= ln(A) for A > 1.  [ diverges at  the transition 
in a similar way to the thermal correlation length in statistical mechanics. In  addition 
Thouless (1983) has shown that the bandwidth (sum of the widths of the individual 
sub-bands) for the union of the spectra for all v is 41A - 11, which vanishes at the 
self-dual point. There is, then, the possibility of a fractal or Cantor-set-like spectrum 
at this point. Hofstadter made an  extensive numerical investigation of the spectrum 
for this case and  its highly intricate patterns in the E - q5 plane have inspired people 
to christen it the ‘butterfly’ diagram (figure 1). 

There are many ways of attempting to analyse Harper’s equation. In  the original 
paper he performed a WKB calculation but it did not reveal the full complexity of the 
problem. However, this work was followed up  by Azbel (1964) who extended the WKB 

analysis and  put forward the basic suggestion that the clustering of the bands is related 
to the continued fraction representation (CFR) of 4, In particular he conjectured that 
if 

(4) 
1 

1 q 5 =  

1 
1 

n,+- 
n4+.  . . 

H I +  

n2 + 

(which shall be written as 4 = [ n, , n2, n3, n4, . , .I) then the spectrum could be described 
as consisting of n,  bands which split up  into n2 smaller bands and so on. This is not 
quite correct as the total number of bands produced by this scheme is 

n,n,n, . . . ( 5 )  

nln2n3 . . . + n2n, . . . (6) 

while the actual number is 
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Figure 1. The spectrum of Harper’s equation at the critical point. Energy is the horizontal 
variable ranging between -4 and 4 while 4 is the vertical variable ranging between zero 
and one. 

i.e. the denominator q of the fraction 4. This follows trivially from the fact that q is 
the dimension of the matrix to be diagonalised. In a numerical investigation of the 
spectrum Hofstadter discovered a set of rules which relate the band clustering to the 
CFR of q5 in a more complicated way than that of Azbel but without its inconsistencies. 
Unfortunately this work was numerical and the origin of the rules was unexplained. 
In the next section we show that these rules are directly related to a perturbation theory 
of the equation. 

3. Proof of the Hofstadter clustering rules 

Hofstadter’s clustering rules are a recursive way of analysing the spectrum of Harper’s 
equation for a given value of 4. They were first deduced for the special case A = 1 
but here they will be derived for all A. Inspecting figure 1 shows that the spectrum is 
split into two side clusters and a central cluster separated by two principal gaps. The 
idea is to consider these clusters as rescaled versions of the full spectrum but with new 
effective values of 4. Hofstadter deduced that for the side clusters this rescaled value 
of 4 is 

R ( 4 )  ={U41 O < + < $  

= {1/(1- 411 ;<4<1  ( 6 )  
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where {x} denotes the fractional part of x. These rules can be applied recursively, at 
each stage locating the principal gap of each cluster. The iteration ends when the 
rescaled values of 4 are equal to zero, in which case the sub-clusters consist of only 
one band. 

To derive these rules we shall use perturbation theory in powers of A. Writing the 
Hamiltonian as 

H = + 8n,m-l +2A c o s ( 2 ~ 4 n  + v)8n,m (8) 

we shall take the cosine term as the perturbation so that plane wave states are the 
unperturbed wavefunctions. For simplicity we shall firstly apply Rayleigh-Schrodinger 
perturbation theory which gives 

for the second-order shift. V k k ,  is the matrix element between unperturbed states and 
is non-zero only for k' = k * 2 ~ 4 .  Eo( k )  is the unperturbed energy. The denominator 
vanishes (and hence perturbation theory breaks down) when Eo( k )  = E0(k*27r4)  
which happens at k = 3 ~ ~ 4  and at k = *7r( 1 - 4 ) .  These are the wavevectors at which 
the first gaps open up. In mth order the perturbation will open up gaps at the wavectors 
k = *Tm+ and k = *T(  1 - m 4 )  which were not present at lower order. Reducing to 
the zone ( -T ,  T )  this becomes 

k=+. r r {m+}  or * d l  - { m 4 } ) .  (10 )  
The above equation for the location of the gaps which first appear in mth order is the 
first crucial statement in the proof of the rules. It is believed to be generally true for 
quasiperiodic Schrodinger operators (Ostlund and Pandit 1984). The other assumption 
which we shall use is that the gap formed by the mth order of perturbation will be of 
order A"' and so m labels the gaps in order of decreasing size (Thouless et a1 1982). 
It may seem that for A > 1 the perturbation theory should break down but by duality 
the A > 1 equation can be transformed into a A < 1 equation (see ( l ) ,  (2) and (3)) so 
that our arguments will hold in this case too. There may still appear to be a problem 
at A = 1 but this can be resolved by a simple argument. For small A the principal gap 
width is just 2A while for large A it must tend towards 2 by using duality. By 
extrapolation between these two limiting cases it is clear that for A = 1 the gap width 
must be less than 2h, so there is an additional convergence factor. In general we expect 
the gap at mth order to be narrower than A "  and so our perturbation theory should 
work for all A. 

The problem of vanishing denominators in the Rayleigh-Schrodinger perturbation 
theory can be eliminated by using degenerate perturbation theory. Taking matrix 
elements of the Hamiltonian between states Ik) and lk+27r4)  and diagonalising the 
resulting sub-Hamiltonian gives 

E ( k )  = 2  c o s ( k + 2 ~ 4 )  C O S ( T C # J ) * [ ~ C O S ~ ( ~ + ~ ~ ~ )  s i n ' ( ~ q 5 ) + A ~ ] ' ' ~  (11) 
which is valid near k = -m$ and -T - ~ 4 ,  where the states used are de:generate. There 
is a similar result valid near k = ~4 and T - ~4 which is obtained from the above by 
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replacing 4 by -4. In both cases the gaps are of width 2A. A sketch of the resulting 
spectrum is shown in figure 2. This, in effect, proves the first part of the clustering 
rules, namely that the spectrum is split up by two principal gaps into three sections. 
It strongly suggests that the origin of the rest of the rules can be explained in terms 
of perturbation theory. The splitting of the spectrum into three main sections is a 
feature of other I D  quasiperiodic potentials. 

The next stage is to investigate the pattern of splittings of this first-order approxima- 
tion to the spectrum to all orders of perturbation and hence to prove the clustering 
rules. Consider the upper side band which occupies (-T+, ~ 4 )  in k space. It is 
convenient to regard the set of k values given by ( lo) ,  which locate the position in k 
space at which gaps first appear in mth, as steps in a walk in k space. There are then 
four walks all of step length T+, which move off to the left and to the right from the 
symmetry points at k = 0 and k = -T (which is equivalent to T )  visiting the k values 
corresponding to the degenerate states linked by the perturbation. The mathematical 
problem involved in discussing the splittings of the sub-clusters is to find which walks 
(i.e. the m value) land in the region ( -TA 7~4) and to show that this sequence of k 
values, after rescaling by l / +  to ‘stretch’ the region (-T+, ~ 4 )  to ( -v,  T ) ,  is the same 
as that for the whole zone (given by the sequence in (10)) except that 4 is replaced 
by a rescaled value 4’. The walk starting from -T will take m = [ 1/41 steps to reach 
( - q b ,  7~4) and the following step will also lie in this region as the step length is half 
its width. So, m = [ 1/43] and m = [ 1/41 + 1 are the lowest orders of perturbation theory 
which split the upper side cluster. Now consider the walk starting from the point 
k = 0 .  It will reach the region (-.n4, TC$) after m = [ 2 / 4 ]  steps so that m = 
[2/4],  [ 2 / + ]  + 1 are the next orders of perturbation which split the upper side band. 
Continuing in this way it is clear that, in general 

m = [ n / 4 l ,  [ n / + I +  1 ( 1 2 )  
are the orders of perturbation splitting the upper side band where n is an integer 
( n  > 1 ) .  These gaps will occur at k = T (  m 4  - n ) .  Taking into account the fact that 
walks moving to the left produce gaps at k values of opposite sign and substituting 
into (10) gives 

k = * 4 { n / + l  or *.rr4(1 - {n /+ l )  (13) 

I I I I I 

I 

-n+nQ -nQ ne n- n6 
k 

Figure 2. The spectrum of Harper’s equation in the lowest order of perturbation theory. 
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(where the identity {x} = x -[XI  has been used). This can be written in the form 

where the following identity, valid for any integer n and any x, was used: { n { x } }  = { n x } .  
This puts the equation (14) into exactly the same form as (10) but with m replaced 
by n and with a rescaled value of 4 given by { 1/4}. NOW, in the description provided 
by (10) the gaps decrease with increasing my which can take any integer value. In (14) 
n is also any positive integer and the associated gap also decreases with increasing n 
because by (12) increasing n implies increasing m. A similar argument carries through 
for the lower side cluster. It therefore appears that the description of how the gaps 
appear order by order in perturbation theory in the side clusters is identical to that 
for the full spectrum. The side clusters can thus, within this description, be regarded 
as rescaled full bands with 4 transformed to R( 4 )  and k scaled by 1/  4. The hierarchical 
clustering is then implied by the recursive application of the above scheme. This proves 
the first part of Hofstadter's clustering rules. 

To prove the rules for the central cluster is technically more difficult as the step 
length does not have a simple relation with the width of the k-space region occupied 
by the central cluster. A more compact way of doing this calculation, which will be 
necessary to derive the rule for the central cluster, is to write the condition for the 
walks to 'land' in ( - ~ 4 ,  7~4) as an inequality rrn - m#~ < m < mp + m. Once this is 
simplified to n / r  - 1 < m < 1 + n / 4  it is clear that the solution is just (12) as found 
above. The condition for the k, of (10) to lie in one of the two regions of k-space 
occupied by the central cluster is 

.rrN(n)+ ~4 < rm+ < n N ( n ) +  7~ - ~4 (15 )  
where N ( n )  = n takes into account the region ( ~ 4 ,  7~ - ~ 4 )  and N ( n )  = n - 1 the 
region ( - T +  q b ,  -4). Equation ( 1 5 )  can be rearranged as 

N ( n ) + l  
N ( n ) +  1 < m < - 1 .  

4 4 
Making the substitution x = 4 / ( 1 - 2 4 )  and denoting m -2N - 1  by p ,  this becomes 
N < px < N + 1 which has the solution N = [ px] and p can be any non-negative integer. 
It follows that m = p + 2[ px] + 1 and hence the gaps occur at 

k = * d P4 + 2 4  [ P I  + 4 - [ P I )  (17) 

(18) *(P4'24[PXl+ 4 - [ P I  - 1 )  
where we have subtracted NT to put these into the reduced zone. These equations 
simplify to 

k = * 4 4  + (1 -24){P{X))) 
*44-1+(1  -2+){p{x}}). (19) 

The plus (minus) signs correspond to the right (left) sections of the central band. 
We must now rescale k by a shift of ko= * q b  to bring the left and right sections 

of the central band together and then divide by ( 1  - 2 4 )  to dilate the k-space region 
of the resulting composite band into an equivalent full band. The central gaps then 
occur at 
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in the equivalent full band. Because m increases with increasing p ,  the gap magnitude 
decreases with increasing p.  Comparing (20) with (10) shows that the rescaled value 
4’’ of the variable 4 is 

By the same argument as for the side clusters this transformation can be applied 
recursively to generate the hierarchical structure of the spectrum. This completes the 
proof of the clustering rules. 

4. Simple scaling theory 

The form of the clustering rules suggests that they are the scaling equations of a 
renormalisation group ( RG) transformation of Harper’s equation. They have not yet 
been incorporated into such a transformation but by using a few simple ideas and 
some numerical results a much fuller description of the spectrum can be given. 

Firstly, the fixed-point structure of the 4 scaling equations can be investigated. It 
turns out that the only solutions of the equations S(c$*) = q5* and R ( 4 ” )  = 4* are 

which are colloquially referred to as the golden and silver means respectively. Their 
mirror images about 4 =; are also fixed points. For these values of 4 it will be seen 
that the spectrum is exactly self-similar but this will be discussed later. In addition to 
the 4 rescalings there are, of course, the k rescalings derived in the previous section 
and A rescalings which have not been derived. It is possible to conjecture scaling 
equations for A, by carrying out a decimation transformation on (1) with scale factor 
b. The leading term from such a transformation for A is 

A ’ =  A b  (23) 

k‘ = bk. (24) 

and the wavevector transformation coupled with this is 

Going back to the proof of the clustering rules we see that b = 1 / 4  or 1/(  1 -26 )  must 
be chosen. These equations are of limited value as they stand because there is no 
simple way to obtain an energy scaling equation. However, for the special case where 
E = 0 and 4 is the Golden Mean it is possible to derive one of the results of Ostlund 
and Pandit (1984). At E = 0 we are dealing with the central cluster so that b = 
1/ (24  - 1) = l / $ ~ ~  since 4*+ 4 = 1. Defining r = A - 1 as the ‘distance’ from criticality, 
(23) becomes 

r’= br (25) 

and also 

n‘ = n /  b. 

This leads to the following scaling form of the wavefunction for 4, at E = 0: 

( L n ( 7 )  = (Cln/b(br) (27) 
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which was observed numerically by Ostlund and Pandit (1984). Another result which 
can be derived with this simple theory is the expression for the correlation length. 
From (25) we can write .$’= .$/b. This allows us to write down the functional equation 
. $ ( A b )  = .$(A)/b which has the solution 5 = l / ln  A. At the moment energy scalings have 
not been incorporated into the scaling theory of Harper’s equation analytically but, 
by using numerical calculations, some interesting results can be obtained as we shall 
see in the next section. 

5. Cantor set structure of the spectrum 

Numerical diagonalisation using the Lanczos algorithm allows the spectrum of Harper’s 
equation to be calculated with comparative ease for quite high orders of commensurabil- 
ity. Of particular interest are the results for 4g and A = 1 since this is a fixed point of 
the combined transformation for 4 (the clustering rules) and A (equation (23)). To 
do this we need to make use of the rational approximants 4, of 4g which are defined 
by 4, = F,-l/F, where F, are the Fibonacci numbers given by F,,, = F, + F,-,, 
F,= F, = 1. For a given value of the denominator these numbers can be shown to be 
the ‘best’ approximants to 4g.  Applying the clustering rules to 4n gives R(4, )  = 4n-2 
and S ( 4 , )  = 4n-3 which shows that in the incommensurate limit n +CO both the central 
and side clusters will have the same structure as the spectrum as a whole. Our numerical 
calculations confirm this not only as a qualitative prediction but show that the central 
and side clusters are, in fact, rescaled versions of the spectrum as a whole. In detail 
they showed that the ratio of the bandwidth of the full spectrum for 4,, to the bandwidth 
of the side cluster for c$,,+~ rapidly approaches a limiting value of cy =7.59. There is 
a similar result for the ratio of the bandwidth of the full spectrum for 4, to the 
bandwidth of the central cluster for 4n+3 but with a different scale factor p = 13.74. 
These results are suggestive of Cantor set behaviour, but are not sufficient. If now the 
ratios of the widths (maximum energy of the highest band less the minimum energy 
of the lowest band) of the full spectrum to those of the side and central clusters are 
calculated, they are found to be just cy and p as for the bandwidths. This provides 
compelling evidence that the full spectrum can be described as being either a central 
cluster ‘stretched’ by p or a side cluster ‘stretched’ by cy, and hence is a Cantor set. 
The contraction of the widths suggests that all the individual bands within the spectrum 
are contracted by the same factor and hence that the scale invariance is complete. 
This is a remarkable property which appears to be restricted to the fixed point values 
of the clustering rules. In the case of the ‘silver’ mean the scale factors a and p are 
5.77 and 39.59 respectively. 

The fractal dimension Df  of the spectrum can now be calculated in terms of the 
scale factors cy and p. The ‘length’ or measure of the full  spectrum will be designated 
M ( L ) .  Using the scale invariance of the spectrum we obtain 

and assuming that M (  L )  cc LDf we can deduce that the fractal dimension is given by 
the equation 

M ( L )  = 2 M ( L / a ) + M ( L / P )  (28) 

1 =2/cyDf+l/pDf. (29) 
This equation can be solved for D f  using the scale factors quoted above to give 0.497 
for 4g and 0.496 for 4s.  The proximity of both of these values to 0.5 will be discussed 
later. 
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To complete this discussion of the spectrum it is interesting to write equations for 
the bandwidths. Let the bandwidth of the spectrum for 4, be written as B,. The 
previous work showed that 

B, = 2B,-,/~t + Bn-3/P. (30) 

This can be solved by substituting B, a x n  and using the positive root of the resulting 
cubic equation. This gives, to sufficient accuracy, 

B, a 4, a I /  F, = l /q.  (31) 

This shows that the algebraic fall-off of the bandwidth with q (Thouless 1983) is 
associated with the scaling of the spectrum. 

An alternative approach to the calculation of the scale factors cy and p, which is 
more in the spirit of the derivation of the clustering rules, is to use Brillouin-Wigner 
perturbation theory. Care has to be taken, however, because using equation (1 1) it is 
clear that the gap edges occur at E = *2 cos( n-4) * A and will overlap for A = 1 which 
is the interesting case. By going to higher order in perturbation this problem can be 
eliminated. The expansion for the energy in Brillouin-Wigner perturbation is 

The essential difference between this and the usual Rayleigh-Schrodinger perturbation 
theory is that the exact energy E ( k )  occurs in the denominators. This eliminates 
problems arising from vanishing denominators at the expense of producing a poly- 
nomial equation to solve in E. It is, however, a convenient framework for doing 
degenerate perturbation theory beyond lowest order. When applying this expansion 
to Harper's equation the potential will be taken to be 2A c o s ( 2 ~ 4 n  + v), which only 
has two non-vanishing denominators: Vk,k+2.rr,$ = A exp(*iv). Notice that the squared 
moduli are independent of v. This can be directly used to prove the result that for 
irrational 4 the spectrum is independent of v, as all odd-order matrix elements in the 
expansion vanish. Using the fact that the product of matrix elements for the even 
orders is A "  and the expression E o ( k )  = 2 cos(k) for the unperturbed energy the 
second-order result for the dispersion near a gap is 

). (33) 
1 + 

( E  ( k )  - Eo( k + 2 ~ 4 )  E ( k )  - Eo( k - 2 ~ 4 )  
1 

E ( k ) =  E o ( k ) + A 2  

This is a cubic equation for E and is, in fact, the same as that which could have been 
derived by diagonalising the sub-Hamiltonian formed by taking matrix elements of 
(8) in the sub-space of the states 1 k ) ,  1 k f 2 ~ 4 ) .  It is the first term in the square brackets 
of (33) which is responsible for the formation of the gaps at k = -T+, T - TC$ while 
the second is responsible for those at k = IT+, - - 7 ~  + ~ 4 .  Selecting any one of these 
terms yields the result 1 2  cos( ~ 4 )  f A for the gap widths. To calculate the location 
of the gap edges to higher order at k = n-4, say, it is convenient to only retain those 
terms in the perturbation expansion which would have diverged had ordinary perturba- 
tion theory been used. These will clearly be the dominant terms in contributing to the 
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formation of the gaps. Up to fourth order in A the expansion for E around k = ~4 
is, then, 

, 2  
A 

E ( k )  = Eo( k )  + 
E ( k )  - Eo( k - 2 4 )  

A 4  
( E (  k )  - Eo(k - 2 ~ 4 ) ) * ( E (  k )  - Eo( k - 4 ~ 4 ) )  * 

+ (34) 

This can be solved numerically at k = n-4 quite simply as it is only a quartic equation 
and gives E = 0.201, 1.841 for the gap edges if 4 is the golden mean and A = 1. A 
similar calculation for k = n- - ~4 leads to the same answers but with the opposite 
sign, as expected. To find the width of the entire spectrum it is sufficient to use the 
full second-order result and solve for E ( k  = 0). This leads to the following result: 

A E  = 2 (  1 + c o ~ ( 2 n - 4 )  + 2J[( 1 - c o s ( ~ T ~ ) ) ~ + A ~ ]  (35) 

which gives 5.01 for 4g and A = 1. This is in good agreement with our numerical 
results. Combining this result with the previous ones for the gap edges we can calculate 
the energy scale factors (for the golden mean) as cy = 7.57 and p = 12.46 which compare 
favourably with the numerical values. Similar calculations for the silver mean yield 
results of comparable accuracy. 

and 4g turned out 
very close to one half. This raises the question whether the fractal dimension of the 
spectrum is equal to a half for a transcendental number, i.e. an irrational not having 
a periodic continued fraction representation. These numbers can be considered as 
being ‘typical’ and do not have a periodic continued fraction representation, and hence 
are not fixed points of either of the clustering formulae. To test this idea we considered 
E- 1 which has the continued fraction representation 

It was pointed out earlier that the fractal dimension for both 

E - 1 = [ 3 ,  1,5,  1,1,4,  1, 1 , 8 , .  . .I. (36) 

By calculating the spectrum numerically for 4 = 1120/4309 and by using the definition 

(where N ( p )  is the minimum number of rulers of length p to cover the fractal) we 
found that Df = 0.518. Again, this is very close to 0.5 and diagonalisation of a larger 
matrix may well yield a result even closer to a half. It is possible to argue that Df= 0.5 
for all irrational values of 4. To do this remember that the bandwidth of the spectrum 
tends to zero as l /q.  With 4 = p / q  there are q bands and their average width will be 
l /q2.  Going back to the definition (37) we can replace N with q and p with l / q 2  to 
give Df=0.5.  Of course this calculation is only suggestive but together with the 
numerical results it provides strong evidence that the fractal dimension is indeed equal 
to a half for all irrational values of d. 

6.  Quasicrystal models 

Equations similar to Harper’s equation but with a different quasiperiodic potential 
have appeared recently in connection with the study of phonons in quasicrystals. Of 
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particular interest is the so called Fibonacci chain model (e.g. Ogadaki and Nguyen 
1986). In its simplest form it is a generalisation of the diatomic chain with the atoms 
of masses m, and mb occurring in a quasiperiodic fashion in the non-stoichiometric 
ratio &. The unit cell of the lattice is generated by iterating the following recurrence 
relation m times: 

A + A B  

B + A .  

Starting from B, say, this generates a word consisting of A and B which specify the 
location of the atoms of masses m, and mb in the chain. The periodic repetition of 
this word then generates the system. Notice that at the mth stage of the construction 
the repeating period in the system is just the Fibonacci number F,, whence the name 
of the model. The quasiperiodic (incommensurate) limit is approached as m + CO. 

The results of Kohmoto (1983) show that the Hofstadter clustering rules are valid 
for this model as well. Of course, these rules are of less interest in the Fibonacci chain 
model as the incommensurability is fixed at the golden mean, but nonetheless it is 
worthwhile to investigate their generality. For Harper’s equation the essential 
ingredient was that the gaps appeared at the k values given by 

kl=  * 7 ~ {  l ~ }  or * 77( 1 - 77{ 177)) (39) 

where 1 labels the gaps in order of decreasing magnitude. This must now be shown 
to be true for the Fibonacci chain model. In this model the potential can be written as 

where all of the Fourier components indexed by 1 are present. Because of this, in 
lowest-order perturbation theory, gaps will open at all of the wavevectors given in (39) 
when put into a reduced zone scheme and with widths approximately 21 V,l (Lifshitz 
and Pitaevski 1980). A basic point here is that the coefficients Vr depend upon the 
mass difference 6 between the atoms (see appendix) so that for small 6 the simple 
perturbative result for the gaps is valid. It remains then to show that the amplitudes 
decrease with increasing 1. This can be done by explicitly Fourier transforming the 
potential. The result (which is given in an appendix) is, however, quite complicated 
and it is better to proceed by more intuitive arguments. After subtracting the average 
value of the potential it is clear that the dominant Fourier component is cos (2~4 ,n )  
simply because the ratio of A to B sites is 4g.  It can then be argued that the higher 
harmonics cos(2~4, ln) ,  which will form gaps at kr,  will have amplitudes that decrease 
with increasing 1. This is the basic result which is required to prove the clustering rules 
and the calculation proceeds as for Harper’s equation. In conclusion, the result that 
the gap which forms at kr is a decreasing function of 1 follows here because though 
the gap at k, can be produced by an onward ‘walk in k space’ whose rth step is ~ 1 ~ 4  
such -that 1, = 1, the amplitude vr of the Fourier component 27741, of the potential 
decreases with 1,. Moreover, since each amplitude is proportional to 6, for small 6 
the dominant term comes from the one-step walk of length 7714 whose strength again 
decreases with 1. This is quite distinct from the case of Harper’s equation where the 
result is a consequence of the gap at kl being formed by the lth order of perturbation 
with a single Fourier component. 
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7. Perspective 

It is clear that the proof of the clustering rules can be regarded as part of a renormalisa- 
tion group transformation of Harper's equation for which the energy scaling equations 
have to be calculated numerically. However, it seems likely that a calculation using 
the method of Wilkinson (1984) but using perturbation theory instead of WKB theory 
would provide a complete transformation and resolve, finally, the question of the 
fractal dimension of the spectrum. Work is in progress in this direction. 
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Appendix 

In this appendix we calculate the discrete Fourier transform of the potential m, 
occurring in the Fibonacci chain model and show that it is proportional to the mass 
difference 6 = m, - mb. This indicates that for small 6 a perturbative approach is valid. 

The quantity which we calculate is 

where q denotes the order of the hierarchy being considered and N = Fql ( I  = number 
of unit cells in the system). By splitting the summation up into 1 groups of Fq terms 
it becomes 

1 1 -exp(ikN) 
1 - exp(ikFq) 

F', 

&(q ,  k) = m(q, n )  exp(ikn). 
n = l  

Now & will be calculated by deriving a difference equation for it. Define: 

O(n) = 1 n 3 O  

= O  n < O .  ('43) 

Then 

& ( q + 1, n ) = G ( q, n ) 6 ( F, - n ) + 5 ( q - 1, n - Fq ) O ( n - 1 - F, ) 

where the decomposition property of the potential has been used to write the qth word 
as a combination of the ( q  - 2)th and ( q  - 1)th word. The following equation can now 
be written for &: 

n = 1 , .  . . , F,,, 
('44) 

& ( q + l ,  k )=&(q ,  k)+exp(ikF,)&(q-l ,  k). (A51 
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This has the particular solution 

6 ( q ,  k)=1-exp(ikF,) 

corresponding to the pure chain limit. This suggests substituting 

6 ( q ,  k )  = P(4,  k ) ( l  -exp(ikF,)) 

A(q, k ) = p ( q ,  k ) - P ( q - L k )  

A ( q +  1, k) = A ( %  k l f (q ,  k) 

and if we define 

then 

where 

so that 

A I  and po can be explicitly calculated to be 

ma-mb mb 
A 1  = Po = exp( -ik) - 1 exp( -ik) - 1 * 

This solution shows that the coefficient of the quasiperiodic part of the potential 
depends upon the mass difference S as stated in the text. 
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